Where we are - and where we go with oVirt Node

Fabian Deutsch, Red Hat
oVirt Workshop
Oct 16 2014
What it is

- “Hypervisor” for oVirt
- Minimal OS image prepared for oVirt
- Installation/upgrade on bare-metal
- Custom Installer TUI & Setup TUI

- Easy to deploy, manage and upgrade
What it is

Demo

https://www.flickr.com/photos/mrmuskrat/3637703614
Pains

● User Experience
 ○ SELinux
 ○ Installation (multipath, iscsi, efi, secureboot, …)
 ○ Customization (kmods, offline + online)
 ○ Consumption (persistence)

● Maintenance

● Build
Causes

● User experience
 ○ read-only rootfs
 ○ installation
 ○ customization

● Developers
 ○ consumption / persistence
 ○ testing

https://www.flickr.com/photos/31031835@N08/10007190363
Changes

- No custom installer
- Regular “writable” root filesystem
 Technically behaves like a regular OS
- Split rootfs, from TUI, from deployment
Installation

- Installer: Anaconda
 - Using a regular kickstart
Storage

● Specific LVM usage pattern
 ○ Boot into writable thin-volume a top a read-only “original”
Upgrade

- Add a new image + new boot entry
 - Number of upgrades is limited by disk size
 - Rollback: Select old entry, boot into old image
Local Administration

- Runtime Setup TUI is kept
 - Simplified below the surface
Improvements

★ Easier
 ○ to consume by payloads (vdsms, ...)
 ○ building + test
 ○ to extend (just a package)

★ Open to configuration management

★ Add packages/kmods
 (at runtime)
Links

- **Prosa**
 - http://dummdida.tumblr.com/tagged/node

- **Sources**
 - https://github.com/fabiand/imgbased/

- **CI**
 - https://travis-ci.org/fabiand/imgbased/
 - http://jenkins.ovirt.org/view/All/job/fabiand_ovirt-node-tng_image_build_daily/
 - http://jenkins.ovirt.org/view/All/job/fabiand_ovirt-node-tng_image_check_functional/
 - http://jenkins.ovirt.org/view/All/job/fabiand_ovirt-node-tng_image_check_install/
Open questions

- Stateless
 - Previous Node side blocker: Where to keep the state
 - Option: Generic Registration and/or Foreman
 - Diskless?

- Maximum minimization (smallest size)
 - Foreman Discovery Image