

Scheduling & SLA @oVirt

8/11/2012

Doron Fediuck Supervisor Red Hat

Overview

SLA Scheduling

Overview: SLA

- SLA: Service Level Agreement
 - Ensures Quality of Service (QoS) based on parameters and a schema.

ISP

• Schema would be Internet access.

- Parameters: Up/Down bandwidth, MTTR (Mean Time To Recover), etc.
- In cloud computing this is becoming crucial, as we're providing laaS

Overview: Scheduling

- Placing a VM on a host
- Schedule various host tasks

Machine re-assignment problem^[1]

- Defined by Google; assign each process to a machine. All processes already have an original (unoptimized) assignment. Each process requires an amount of each resource (such as CPU, RAM, ...)
- A solution to this problem is a new process-machine assignment which satisfies all hard constraints and minimizes a given objective cost

Found to be mathematically NP-Complete (can't be solved)

^[1] http://challenge.roadef.org/2012/en/

Overview: Scheduling & SLA

So what CAN we do?

- Optimize scheduling scenarios
 - Scheduling improvements
 - Integration with external systems

- Add various features which will function as a toolbox
- Prepare the infrastructure for advanced SLA concepts

Scenarios

What is it good for, anyway?

Scheduling & SLA @oVirt

Scenarios

SLA Based

- Multi Tenancy / cloud models: capping, quotas
- VM HA

Scheduling based

- *Memory over commitment*
- Power saving policies
- KSM performance: negative affinity
- Advanced scheduling
 - Time based: turn on/off at a given time
 - Various algorithms implementations
 - Statistic-based scheduling

Scenarios: SLA

Private-cloud / multi-tenancy models

- Limitations / Capping (CPU, RAM, TBD...)
 - Allow limiting a VM's resource consumption
 - Provide better control on VM behavior and prevent a VM from going wild.
- Quota
 - Management level limitations

Scenarios: SLA

VM High Availability

- <u>Host level</u>: Tagged hosts should be used when scheduling HA-VMs.
- <u>VM level</u>: allow auto-reset when guest fails (blue screen, etc.)
- <u>Application level</u>: monitor specific application(s) and act accordingly (reset, migrate, etc) when it stops responding

Scenarios

VM affinity (co-location, Positive / Negative)

- Negative affinity
 - One VM 'repels' the other
 - HA via separate host VM placements
- Positive affinity
 - One VM 'attracts' the other VM
 - Grouping all VMs with the same OS will get best KSM results.
 - Licensing pricing model in some OSs
 - Simple maintenance and power saving
 - Traffic monitoring for specific VMs

Allow running more VMs than available physical memory

HW utilization: Memory Over Commitment

Power saving policies

- Shutdown idle VMs
- Gather all VMs to several hosts (load balancing, already exists) and shut down / suspend unused hosts.

Scenarios: Scheduling

Advanced VM scheduling

- Time based: turn on/off at a given time
- Various algorithms implementations
- Statistic-based scheduling

Scheduling considerations

Consider while scheduling...

Each VM and host has meta-data crucial for scheduling

Resources

- Connection to network RED
- Storage usage (DB in a guest)
- HA reservations
- Topologies
 - CPU pinning
 - NUMA

Resource mapping should be preserved after migration

What happens when destination host will not support it?

Avoid collisions

- Host-Pinning / HA vs Power savings
- CPU-pinning vs NUMA / KSM
- Optional vs Mandatory VM network

Naive rule: specific settings will override the general policy

Host-Pinning overrides Power savings

What do we have so far?

Existing Algorithms

- Even distribution
- Power saving
- **Current scheduling**
 - Running a VM
 - Basic validations
 - HasMemoryToRunVM
 - Use the relevant selection algorithm to find the best host

Current scheduling

- Migrating a VM
 - Same validations as with running a VM
 - Avoid selecting current host
 - HasCpuToRunVM
 - Use the relevant selection algorithm to find the best host
- Load balancing (cluster policy)
 - Time based polling, using one of the current selection algorithms to migrate VMs as needed.

New features 3.1 introduced

- Enabling memory balloon by default^[1]
 - Deflated, may be used externally
- CPU pinning^[2]
 - Specific and range pinning topology
 - Migration allowed
 - No validation on destination host.

^[1] http://wiki.ovirt.org/wiki/Features/Design/memory-balloon ^[2] http://wiki.ovirt.org/wiki/Features/Design/cpu-pinning

Quota^[1]

- Control resource allocation
- Storage quota

- Cluster (Memory+CPU) quota
- Disabled (default), audit and enforcing modes
- Search-queries (VMs, templates and disks)

oVirt Ope	n Virtualization Manager	
Search:	Vms: quota =	×
	Vms: quota =	
	Vms: quota = null	
Tree		
Freedow Colle		

[1] http://wiki.ovirt.org/wiki/Features/Design/Quota

Schedu	ling & SL	A Today				oVirt	
Quota	sample						
New Quota							
Name SampleQuota Data Center Default	Description	Students quota year 2012					
Memory & CPU							
80%	120%	Cluster Threshold					
All Clusters	Specific Clusters						
Cluster Name	Memory	VCPU					
🕑 Default	0 out of 2048 MB	0 out of Unlimited vCPUs		Edit)			
			Edit Quo Memory:	ıta			
Storage 75%	120%	Storage Threshold	Unlimited	💌 limit to	2048 MB		
 All Storage Domains 	Specific Storage	Domains	CPU:				
Storage Name	Quota		Unlimited	limit to	vCpus		
All Storage Domains							
					OK Ca	ancel	
			<u> </u>				
l			OK Can	cel			

Work in Progress

So what are we doing?

Work in Progress

Pluggable scheduling architecture^[1]

- Replace or add to internal scheduler
- Allow users to write their own scheduler
- API based
- Community friendly
- Actually, needed by community...

Work in Progress Smart Scheduler Integrating BMC

Start VM / Migrate a VM Srinivas Gowda G Surya Prabhakar Dell India R&D CPU Memory Presented Last month Host_C Host_A Host B H In Bangalore Load Balancing Policy oVirt workshop Check for Hardware status

Scheduling & SLA @oVirt

Host_A

Work in Progress

- Rules engine (RBMS) integration
 - Based on pluggable scheduling
 - Currently suggested as a POC

- Tomorrow in László Hornyák's session on Drools integration.
- Internal Quota improvements^[1]
 - Filling-in UI gaps
 - Making sure Quota is not skipped by new commands

Work in Progress

- Integrating VDSM-MoM
 - Written and maintained by Adam Litke
 - Joined oVirt as an incubation project last year
 - Monitors and handles ksm and ballooning
 - Trying to prevent interaction mistakes
 - Ballooning VS KSM

Work in Progress: mom integration^[1]

- MOM threads run within vdsmd
- Stats collected via the vdsm API
- Ksm / ballooning operations via vdsm API
- VDSM installs a default MOM policy

http://wiki.ovirt.org/wiki/SLA-mom

[1]

Work in Progress

MoM integration^[1]

- MoM is becoming the enforcement agent
- VDSM integration done by Adam Litke and his colleagues (Mark Wu, Royce Lv)
 - Still gaps on engine side.
- Initial phase for basic integration while maintaining ksm functionalities, adding API support for memory balloon
 - Packaging and maintaining (added to Bugzilla)
 - Now adding capping (limitations) API support to VDSM
 - CPU & Memory (guaranteed, hard and soft limits)

Road-map

to Infinity (affinity?) and Beyond!

Scheduling & SLA Road-map

- SLA features
 - VM Watchdog (VM HA)
 - HEAT integration (Application HA)
 - NUMA (numad, auto-numa)
- Scheduling: additional improvments
- Extend MoM capabilities
 - Handle specific VMs
 - Policy resolution (allow policy parts)
 - Limitations for network & storage

and now is a good time for.... Questions?

THANK YOU !

http://wiki.ovirt.org/wiki/Category:SLA engine-devel@ovirt.org vdsm-devel@lists.fedorahosted.org

#ovirt irc.oftc.net